

# ADW300 Wireless Metering Meter

Installation and Use Manual V1. 4

Acrel Electric Co., Ltd.

# Declaration

The copyright is the property of Acrel. Any information in any paragraph or section cannot be extracted, copied or otherwise reproduced or propagated. Otherwise offenders shall take all consequences.

All rights are reserved.

Acrel reserves the right to modify the product specifications herein without notification. Please consult the local agent about the latest specifications before placing a purchase order.

| Declaration                                                                                                                                                                                | 1                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1 Overview                                                                                                                                                                                 | 1                   |
| 2 Product model and specification                                                                                                                                                          | 1                   |
| 2.1 Naming Rules                                                                                                                                                                           | 1                   |
| 2.1.1 ADW300 Wireless Metering Meter                                                                                                                                                       | 1                   |
| 2.1.2 Adw300-hj wireless meter naming rules                                                                                                                                                | 1                   |
| 2.2 Functional Characteristics                                                                                                                                                             | 2                   |
| 3 Technical parameter                                                                                                                                                                      | 2                   |
| 3.1 Electrical performance                                                                                                                                                                 | 2                   |
| 3.2 Work environment                                                                                                                                                                       | 3                   |
| 3.3 LORAWAN parameters                                                                                                                                                                     | 3                   |
| 4 Dimension and installing description                                                                                                                                                     | 4                   |
| 4.1 Dimension (Unit: mm)                                                                                                                                                                   | 4                   |
| 4.2 Interfaces of Auxiliary power supply, Communication and Pulse                                                                                                                          | 6                   |
| 4.3 Interfaces of DI and DO                                                                                                                                                                | 6                   |
|                                                                                                                                                                                            |                     |
| 4.4 Interfaces of Temperature and Aftercurrent                                                                                                                                             | 7                   |
|                                                                                                                                                                                            |                     |
| 4.4 Interfaces of Temperature and Aftercurrent                                                                                                                                             | 8                   |
| <ul><li>4.4 Interfaces of Temperature and Aftercurrent</li><li>4.5 Instruction of wiring</li></ul>                                                                                         | 8<br>8              |
| <ul><li>4.4 Interfaces of Temperature and Aftercurrent</li><li>4.5 Instruction of wiring</li><li>4.5.1 ADW300</li></ul>                                                                    | 8<br>8<br>10        |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li> <li>4.5 Instruction of wiring</li> <li>4.5.1 ADW300</li> <li>4.5.2 ADW300W</li> <li>4.5.3 ADW300&amp;Rogowski Coil</li> </ul> | 8<br>8<br>10        |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li> <li>4.5 Instruction of wiring</li> <li>4.5.1 ADW300</li> <li>4.5.2 ADW300W</li> <li>4.5.3 ADW300&amp;Rogowski Coil</li> </ul> | 8<br>10<br>10<br>11 |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li></ul>                                                                                                                          |                     |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li></ul>                                                                                                                          |                     |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li></ul>                                                                                                                          |                     |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li></ul>                                                                                                                          |                     |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li></ul>                                                                                                                          |                     |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li></ul>                                                                                                                          |                     |
| <ul> <li>4.4 Interfaces of Temperature and Aftercurrent</li></ul>                                                                                                                          |                     |

## Contents

|     | 6.2 MODBUS                                                      | 13 |
|-----|-----------------------------------------------------------------|----|
|     | 6.3 Alarm function related Settings                             | 23 |
|     | 6.3.1 Alarm 1 related parameter register address table          | 23 |
|     | 6.3.2 Alarm 2, alarm 3 related parameter register address table | 26 |
|     | 6.4 Historical Data Memory                                      | 39 |
|     | 6.5 Record of extreme value and occurrence time                 | 40 |
| 7 ( | Common troubleshooting                                          | 43 |

## **1 Overview**

ADW300 Wireless Metering Meter is mainly used to metering three phase active energy on low voltage network. The product boasts of advantages including compact size, high precision, rich features. According to different requirements, there are many communications functions like RS485 communication,lora,NB,4G,WIFI adding the new current sampling mode using external transformer. It can be flexibly installed in the distribution box to achieve sub-item electric energy metering, operation and maintenance supervision or power monitoring requirements for different regions and different loads.

## 2 Product model and specification

#### 2.1 Naming Rules

#### 2.1.1 ADW300 Wireless Metering Meter



#### 2.1.2 Adw300-hj wireless meter naming rules



## **2.2 Functional Characteristics**

| Functions                    | Description                                                        |  |  |  |  |
|------------------------------|--------------------------------------------------------------------|--|--|--|--|
| Display mode                 | LCD                                                                |  |  |  |  |
| Energy metering              | Active kWh (positive and negative), quadrant reactive power energy |  |  |  |  |
| Electrical measurement       | U, I, P, Q, S, PF, F                                               |  |  |  |  |
| Harmonic function            | THDv, Harmonic on 2nd-31st                                         |  |  |  |  |
| Pulse output                 | Active pulse output                                                |  |  |  |  |
| Three-phase unbalance degree | Voltage unbalance,current unbalance                                |  |  |  |  |
| Temperature measurement      | Temperature of A/B/C/N (Alternate configuration:T)                 |  |  |  |  |
| DI/DO                        | 4DI,2DO (Alternate configuration:K)                                |  |  |  |  |
| Aftercurrent                 | One-way aftercurrent (Alternate configuration:L)                   |  |  |  |  |
| LED display                  | Pulse LED display                                                  |  |  |  |  |
| External current transformer | External open type current transformer                             |  |  |  |  |
|                              | (Alternate configuration:W)                                        |  |  |  |  |
| Electrical parameter         | Undervoltage, undercurrent, overcurrent, underload,                |  |  |  |  |
|                              | etc                                                                |  |  |  |  |
|                              | Infrared communication                                             |  |  |  |  |
|                              | RS485 (Alternate configuration:C)                                  |  |  |  |  |
|                              | Wireless transmission on 470MHz                                    |  |  |  |  |
|                              | (Alternate configuration:LR)                                       |  |  |  |  |
| Communication                | GPRS (Alternate configuration:2G)                                  |  |  |  |  |
|                              | NB-IOT (Alternate configuration:NB)                                |  |  |  |  |
|                              | 4G (Alternate configuration:4GHW)                                  |  |  |  |  |
|                              | WIFI (Alternate configuration:WF)                                  |  |  |  |  |
|                              | LORAWAN(Alternate                                                  |  |  |  |  |
|                              | configuration:LW915(AU915),LW868(EU868))                           |  |  |  |  |

#### Chart 1 Functions of ADW300

## **3** Technical parameter

## 3.1 Electrical performance

| Voltage input Rated voltage ×660V |               |               | $3 \times 57.7/100V$ , $3 \times 220/380V$ , $3 \times 380/660V$ , $3 \times 100V$ , $3 \times 380V$ , $3$ |
|-----------------------------------|---------------|---------------|------------------------------------------------------------------------------------------------------------|
|                                   | Voltage input | Rated voltage | imes660V                                                                                                   |

|                 | Reference         | 50Hz                                                                         |  |  |  |  |
|-----------------|-------------------|------------------------------------------------------------------------------|--|--|--|--|
|                 | frequency         | 3002                                                                         |  |  |  |  |
|                 | Consumption       | <0.5VA (Each phase)                                                          |  |  |  |  |
|                 |                   | $3 \times 1(6)A$ ; $3 \times 1(6)A$ (ADW300W), $3 \times 20(100)A$ (ADW300W) |  |  |  |  |
|                 | Input current     | -HJ: (3×1.5(6)A(D10), 3×20(100)A(D16), 3×80(400)A(D24),                      |  |  |  |  |
| Current input   |                   | 3×120(600)A(D36)),1000A/200mV(Rogowski Coil),100A/333mV                      |  |  |  |  |
|                 | Start current     | 1‰ Ib (Class 0.5S), 4‰ Ib (Class 1)                                          |  |  |  |  |
|                 | Consumption       | <1VA (Each phase)                                                            |  |  |  |  |
| Auxiliary power | Power Supply      | AC 85~265V                                                                   |  |  |  |  |
| Auxinary power  | Power consumption | <2W                                                                          |  |  |  |  |
|                 | Standard          | IEC 62053-22:2003, IEC 62053-21:2003                                         |  |  |  |  |
| Measurement     | Active energy     | Class 0.5S (ADW300), Class 1 (ADW300W)                                       |  |  |  |  |
| performance     | accuracy          | Class 0.55 (AD W5007 ; Class 1 (AD W500W7                                    |  |  |  |  |
| periormanee     | Temperature       | +2°C                                                                         |  |  |  |  |
|                 | accuracy          |                                                                              |  |  |  |  |
|                 | Width of pulse    | 80±20ms                                                                      |  |  |  |  |
| Pulse           |                   | 6400imp/kWh , 400imp/kWh                                                     |  |  |  |  |
| Puise           | Pulse constant    | -HJ (6400imp/kWh (D10) 、400imp/kWh (D16) 、100imp/kWh                         |  |  |  |  |
|                 |                   | (D24)、60imp/kWh(D36))                                                        |  |  |  |  |
|                 | Winstern          | Transmission on 470MHz and maximum distance in open space is 1km;            |  |  |  |  |
|                 | Wireless          | 2G; NB; 4G; WIFI                                                             |  |  |  |  |
|                 | Infrared          | The constant baud rate is 1200                                               |  |  |  |  |
| Communication   | communication     | The constant baud rate is 1200                                               |  |  |  |  |
|                 | Interface         | RS485(A、B)                                                                   |  |  |  |  |
|                 | Connection mode   | Shielded twisted pair conductors                                             |  |  |  |  |
|                 | Protocol          | MODBUS-RTU                                                                   |  |  |  |  |

#### 3.2 Work environment

| Tomporatura rango | Operating temperature  | -20°C~55°C |
|-------------------|------------------------|------------|
| Temperature range | Storage temperature    | -40°C~70°C |
|                   | ≤95% (No condensation) |            |
|                   | <2000m                 |            |

Chart 3 Work environment

## 3.3 LORAWAN parameters

| Type Specification | Standard | Channel Plan |
|--------------------|----------|--------------|
| LW915              | AU915    | AU915~928    |
| LW868              | EU868    | EU863~870    |
| AS923              | AS923    |              |
| CN470              | CN470    | 470~510      |

For detailed configuration, see the "Lorawan Configuration" documentation

## 4 Dimension and installing description

## 4.1 Dimension (Unit: mm)

#### (1) Dimensions of ADW300

| Specifications | Current Rating | Inside diameters $\Phi$ mm | Outside diameters<br>Φ mm | Weight |
|----------------|----------------|----------------------------|---------------------------|--------|
| AKH-0.66L45    | 16~100A        | 45                         | 76                        | 0.18   |
| AKH-0.66L80    | 100~250A       | 80                         | 120                       | 0.42   |
| AKH-0.66L100   | 250~400A       | 100                        | 140                       | 0.50   |
| AKH-0.66L150   | 400~800A       | 150                        | 190                       | 1.32   |
| AKH-0.66L200   | 800~1500A      | 200                        | 240                       | 1.94   |

#### Chart 4 Dimension of Residual Current transformer



Figure 1 Rendering of ADW300



Figure 2 Dimension of ADW300



Figure 3 Dimension of transformer HCT16K-FJ

(2) Dimensions of ADW300-HJ

|                  | external dimension (mm) |    |    |    | external dimension (mm) Hole size (mm) |      |      | error<br>range |
|------------------|-------------------------|----|----|----|----------------------------------------|------|------|----------------|
| Specifications   | W                       | Н  | D  | М  | Ν                                      | Φ1   | Φ2   | (mm)           |
| AKH−0. 66/K−∞10N | 27                      | 44 | 32 | 25 | 36                                     | 10   | 9    |                |
| AKH−0. 66/K−∅16N | 31                      | 50 | 36 | 27 | 42                                     | 16   | 17   | $\pm 1$        |
| AKH−0. 66/K−∞24N | 39                      | 71 | 46 | 36 | 52                                     | 24   | 23.5 | <u> </u>       |
| AKH−0. 66/K−⊘36N | 42.5                    | 82 | 58 | 40 | 56                                     | 33.5 | 35   |                |

Chart 5 Dimension of Current transformer



Dimension drawing of supporting transformer

## 4.2 Interfaces of Auxiliary power supply, Communication and Pulse



## 4.3 Interfaces of DI and DO

The digital output is realized by relay for remote control and alarm output.

The digital input is realized by digital signal input. The meter has a built-in +12V working power supply so that it does not require external power supply. The meter collects the external break-make information with digital input module and displays it locally. The digital input not only collects and displays the local break-time information but also provides the remote transmission, i.e. remote communication, with RS485.



Temperature input



Aftercurrent input

#### 4.5 Instruction of wiring

There are four modes of connection like 3-phase 4-wire (current connected via CT), 3-phase 3-wire (current connected via CT), 3-phase 4-wire (current connected via PT and CT) and 3-phase -wire (current connected via PT and CT).

Remark:

1. The ADW300W external transformer has two red and white wires, red connected to instrument IA\*, IB\*, IC\*, white connected to instrument IA, IB, IC; The ADW300-HJ external transformer has two red and black wires, red connected to instrument IA\*, IB\*, IC\*, and black connected to instrument IA, IB, IC;

2. Transformers of ADW300W and ADW300-HJ are with mA output, 5A or 1A output transformer is not allowed connected to the energy meters, otherwise energy meters will be damaged;

3. Neither Short-circuit nor ground connection to energy meters ADW300W (ADW300-HJ) is allowed, otherwise energy meters will be inaccurate or even damaged;

4.When incoming current through the existing transformer output, the existing transformer needs to be kept away from the transformer belonging to ADW300W or ADW300-HJ (>30cm) so as to avoid interference.

#### 4.5.1 ADW300

Please confirm that the model of the meter is ADW300, not ADW300W

ADW300W's current lines doesn't need to connect to the ground.



#### **3-phase 4-wire (current connected via CT)**









3-phase 3-wire (current connected via PT and CT)

#### 4.5.2 ADW300W



3-phase 3-wire

4.5.3 ADW300&Rogowski Coil

**TIP: The current wiring does not need to be grounded!** 



3-phase 4-wire (current connected via Rogowski Coil)



3-phase 3-wire(current connected via Rogowski Coil)

## **5** Main functions and features

#### 5.1 Measurement

Measure all electrical parameters, including voltage U, current I, active power P, reactive power Q, apparent power S, power factor PF, Voltage imbalance, Current

imbalance, frequency, 31st harmonic content and total harmonic content. The measured voltage U keeps one decimal place, the measured frequency F keeps two decimal places, the measured current I keeps three decimal places and the measured power P keeps four decimal places. Voltage imbalance and Current imbalance keeps four decimal places.

Example: U = 220.1V, f = 49.98HZ, I = 1.999A, P = 0.2199KW,  $\triangle$ =0.00%

Supporting 4-way temperature measurement, range: -40 $\sim$ 99°C, accuracy:  $\pm$ 2°C

Supporting after current measurement, The initial range:  $0 \sim 1000$  mA, Range multiples can be set ( $1 \sim 60$ )

#### 5.2 Metering

It can measure the current combined active power, positive active power, reverse active power, inductive reactive power, capacitive reactive power, as seen in the electric power.

#### 5.3 Tiered pricing

Two sets of time tables, a year can be divided into four time zones, each set of time table can set 12 days, four rates (F1, F2, F3, F4 namely Sharp,peak,flat and valley).

#### 5.4 Demand

Demand-related concepts are listed as follows:

| Demand                 | Average power measured during the demand period                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max. demand            | Maximum amount of demand during a specified period of time                                                                                                                                                            |
| Sliding<br>window time | A recurrence method to measure the demand from any time point during a period shorter than the demand period. The demand measured by this means is called sliding demand. The recurrence time is sliding window time. |
| Demand<br>period       | Time interval when the same average power is measured continuously, also known as window time                                                                                                                         |

Measure eight maximum demands, i.e. A/B/C three-phase current ,positive active, negative active, inductive reactive , capacitive reactive and apparent power demands and the time of maximum demand.

#### 5.5 Historical data

Record the historical data on electricity consumption covering previous 12 months (including four quadrant and multi-rate tariff).

#### 5.6 Digital input/ output

There are two-way Digital output and four-way Digital input. The Digital output is realized by relay for remote control and alarm output. The Digital input not only collects and displays the local break-time information but also provides the remote transmission, i.e. remote communication, with RS485.

#### **5.7 Wireless Communication Function**

ADW300 supports RS485 communication, LORA communication, NB, 4G and Wifi communication.For the specific protocols of NB, 4G and Wifi communication, please contact the relevant personnel of our company.

#### **6** Communication description

#### 6.1 Protocol

The meters adapt Modbus protocol. Please refer to the relevant standards for more information.

#### **6.2 MODBUS**

MODBUS-RTU protocol has 03H and 10H command to read and write registers respectively. The following chart is registers' address list:

| Start Address<br>(Hexadecimal) | Start Address<br>(Decimal) | Variable Length R/W                         |                     | Notes |                                   |  |
|--------------------------------|----------------------------|---------------------------------------------|---------------------|-------|-----------------------------------|--|
| 0000H                          | 0                          | Address                                     | 2                   | R/W   | 1~247                             |  |
|                                |                            |                                             |                     |       | 1: 1200bps                        |  |
| 000111                         | 1                          |                                             | 2                   | D/W   | 2: 3400bps                        |  |
| 0001H                          | 1                          | Baud rate                                   | 2                   | R/W   | 3: 4800bps                        |  |
|                                |                            |                                             |                     |       | 4: 9600bps                        |  |
| 0002H                          | 2                          | Spreading factor 2 R/W 6~12                 |                     |       |                                   |  |
| 0003H                          | Frequency channel 2        |                                             | 0-45 (Communication |       |                                   |  |
| 000511                         | 5                          | setting                                     | 2                   | IV W  | the same frequency host)          |  |
|                                |                            | High byte: parityHigh byte: 0-none, 1-even, |                     |       |                                   |  |
| 0004H                          | 4                          | mode, low byte:                             | 2                   | R/W   | 2-odd; low byte: 0-1 stop Bit, 1- |  |
|                                |                            | stop Bit                                    |                     |       | 2 stop Bit                        |  |
| 0005H-0006H                    | 5-6                        | Reserved                                    |                     |       |                                   |  |
| 0007H                          | 7                          | Backlight Time                              |                     |       |                                   |  |
| 0008H                          | 8                          | Code                                        |                     |       |                                   |  |
| 0009H~000CH                    | 9-13                       | Reserved                                    |                     |       |                                   |  |
| 000EH                          | 14                         | PT                                          |                     |       |                                   |  |

| 000FH       | 15    |                                  |            | СТ             |                                                                                  |
|-------------|-------|----------------------------------|------------|----------------|----------------------------------------------------------------------------------|
| 0010H       | 16    | Temperature of N<br>phase        | 2          | R              | Int16<br>unit 0.1°C<br>If the reading value is 105, the<br>temperature is 10.5°C |
| 0011H~0013H | 17-19 | Time,                            | date (seco | nd, minute, ho | our, day, month, year)                                                           |
| 0014H       | 20    | Voltage of A phase               | 2          | R              |                                                                                  |
| 0015H       | 21    | Voltage of B phase               | 2          | R              |                                                                                  |
| 0016H       | 22    | Voltage of C<br>phase            | 2          | R              | Uint16<br>1 decimal places                                                       |
| 0017H       | 23    | Voltage between<br>A-B           | 2          | R              | (The real value is the showed value divide 10.The following                      |
| 0018H       | 24    | Voltage between<br>B-C           | 2          | R              | data all in this rule.)                                                          |
| 0019H       | 25    | Voltage between<br>C-A           | 2          | R              |                                                                                  |
| 001AH       | 26    | Current of A phase               | 2          | R              |                                                                                  |
| 001BH       | 27    | Current of B phase               | 2          | R              | Uint16<br>unit A                                                                 |
| 001CH       | 28    | Current of C phase               | 2          | R              | 2 decimal places                                                                 |
| 001DH       | 29    | Vector sum of<br>3-phase current | 2          | R              | -                                                                                |
| 001EH       | 30    | Active power of A phase          | 4          | R              |                                                                                  |
| 0020H       | 32    | Active power of B phase          | 4          | R              | Int32<br>unit kW                                                                 |
| 0022H       | 34    | Active power of C phase          | 4          | R              | 3 decimal places                                                                 |
| 0024H       | 36    | Total active power               | 4          | R              |                                                                                  |
| 0026H       | 38    | Reactive power of A phase        | 4          | R              |                                                                                  |
| 0028H       | 40    | Reactive power of<br>B phase     | 4          | R              | Int32<br>unit kVar<br>3 decimal places                                           |
| 002AH       | 42    | Reactive power of<br>C phase     | 4          | R              |                                                                                  |
| 002CH       | 44    | Total reactive<br>power          | 4          | R              |                                                                                  |
| 002EH       | 46    | Apparent power of                | 4          | R              | Uint32                                                                           |

|          |    | A phase                         |   |   | unit kVA         |
|----------|----|---------------------------------|---|---|------------------|
|          |    | Apparent power of               |   |   | 3 decimal places |
| 0030H    | 48 | B phase                         | 4 | R |                  |
|          |    | Apparent power of               |   |   |                  |
| 0032H    | 50 |                                 | 4 | R |                  |
|          |    | C phase                         |   |   |                  |
| 0034H    | 52 | Total apparent                  | 4 | R |                  |
|          |    | power                           |   |   |                  |
| 0036H    | 54 | Power factor of A               | 2 | R |                  |
|          |    | phase                           |   |   |                  |
| 0037H    | 55 | Power factor of B               | 2 | R | Uint16           |
| 005/11   | 55 | phase                           | 2 | K | 3 decimal places |
|          |    | Power factor of C               | _ |   | 5 decimal places |
| 0038H    | 56 |                                 | 2 | R |                  |
| 0039H    | 57 | phase                           | 2 | R |                  |
| 000711   |    | Total power factor              | - | R | Uint16           |
|          |    |                                 |   |   | Bit0: DI1        |
| 002 4 11 | 50 |                                 | 2 |   | Bit1: DI2        |
| 003AH    | 58 | State of DI                     | 2 | R |                  |
|          |    |                                 |   |   | Bit2: DI3        |
|          |    |                                 |   |   | Bit3: DI4        |
| 003BH    | 59 | Frequency of                    | 2 | R | Uint16           |
|          |    | power                           |   |   | 2 decimal places |
| 003CH    | 60 | Total energy                    | 4 | R |                  |
|          |    | consumption                     |   |   |                  |
| 002511   |    | Forward active                  | 4 | D | Uint32           |
| 003EH    | 62 | energy                          | 4 | R | unit kWh         |
|          |    | consumption<br>Reversing active |   |   | 2 decimal places |
| 0040H    |    | energy                          | 4 | R |                  |
| 004011   | 64 | consumption                     | - | K |                  |
|          |    | Forward reactive                |   |   |                  |
| 0042H    | 66 | energy                          | 4 | R |                  |
|          |    | consumption                     |   |   | Uint32           |
| 0044H    |    | Reversing reactive              |   |   | unit kVarh       |
|          | 68 | energy                          | 4 | R | 2 decimal places |
|          |    | consumption                     |   |   |                  |
| 0046H    |    | Total energy                    |   |   |                  |
|          | 70 | consumption on A                | 4 | R |                  |
|          |    | phase                           |   |   | Uint32           |
| 0048H    |    | Forward active                  |   |   | unit kWh         |
|          | 72 | energy                          | 4 | R | 2 decimal places |
|          |    | consumption on A                |   |   |                  |

|        |    | phase                      |   |   |                  |
|--------|----|----------------------------|---|---|------------------|
|        |    | Reversing active           |   |   |                  |
| 004AH  | 74 | energy                     | 4 | R |                  |
|        |    | consumption on A           |   |   |                  |
|        |    | phase                      |   |   |                  |
|        |    | Forward reactive           |   |   |                  |
| 004CH  | 76 | energy                     | 4 | R |                  |
|        |    | consumption on A phase     |   |   | Uint32           |
|        |    | Reversing reactive         |   |   | unit kVarh       |
|        |    | energy                     |   |   | 2 decimal places |
| 004EH  | 78 | consumption on A           | 4 | R |                  |
|        |    | phase                      |   |   |                  |
|        |    | Total energy               |   |   |                  |
| 0050H  | 80 | consumption on B           | 4 | R |                  |
|        |    | phase                      |   |   |                  |
|        |    | Forward active             |   |   |                  |
| 0052H  | 82 | energy                     | 4 | R | Uint32           |
| 003211 | 02 | consumption on B           | 4 | K | unit kWh         |
|        |    | phase                      |   |   | 2 decimal places |
|        |    | Reversing active           |   |   |                  |
| 0054H  | 84 | energy                     | 4 | R |                  |
|        |    | consumption on B           |   |   |                  |
|        |    | phase                      |   |   |                  |
|        |    | Forward reactive           |   |   |                  |
| 0056H  | 86 | energy<br>consumption on B | 4 | R |                  |
|        |    | phase                      |   |   | Uint32           |
|        |    | Reversing reactive         |   |   | unit kVarh       |
|        |    | energy                     |   |   | 2 decimal places |
| 0058H  | 88 | consumption on B           | 4 | R |                  |
|        |    | phase                      |   |   |                  |
|        |    | Total energy               |   |   |                  |
| 005AH  | 90 | consumption on C           | 4 | R |                  |
|        |    | phase                      |   |   |                  |
|        |    | Forward active             |   |   |                  |
| 005CH  | 92 | energy                     | 4 | R | Uint32           |
| 005011 | 92 | consumption on C           |   | K | unit kWh         |
|        |    | phase                      |   |   | 2 decimal places |
|        |    | Reversing active           |   |   |                  |
| 005EH  | 94 | energy                     | 4 | R |                  |
|        |    | consumption on C           |   |   |                  |
| 0060H  | 96 | phase<br>Forward reactive  | 4 | R | Uint32           |
| 0000H  | 90 | rorward reactive           | 4 | ĸ | Unit32           |

|             |         | an array                   |      |   | unit kVarh                       |
|-------------|---------|----------------------------|------|---|----------------------------------|
|             |         | energy<br>consumption on C |      |   | 2 decimal places                 |
|             |         | phase                      |      |   | 2 decimai places                 |
|             |         | -                          |      |   | -                                |
|             |         | Reversing reactive         |      |   |                                  |
| 0062H       | 98      | energy                     | 4    | R |                                  |
|             |         | consumption on C           |      |   |                                  |
|             |         | phase                      |      |   |                                  |
|             |         | Maximum forward            |      |   | Uint32                           |
| 0064H       | 100     | active demand in           | 4    | R | unit KW                          |
|             |         | current month              |      |   | 3 decimal places                 |
| 0066H~0067H | 102-103 | Occur time                 | 4    | R | Minute, hour, day, month         |
|             |         | Maximum                    |      |   | Uint32                           |
| 0068H       | 104     | reversing active           | 4    | R | unit kVar                        |
| 000011      | 101     | demand in current          | •    | K | 3 decimal places                 |
|             |         | month                      |      |   | 5 deemai places                  |
| 006AH~006BH | 106-107 | Occur time                 | 4    | R | Minute, hour, day, month         |
|             |         | Maximum forward            |      |   | Uint32                           |
| 006CH       | 108     | reactive demand            | 4    | R | unit kVar                        |
|             |         | in current month           |      |   | 3 decimal places                 |
| 006EH~006FH | 110-111 | Occur time                 | 4    | R | Minute, hour, day, month         |
|             |         | Maximum                    |      |   | LL (20                           |
| 007011      | 112     | reversing reactive         | 4    | P | Uint32                           |
| 0070H       |         | demand in current          |      | R | unit kVar                        |
|             |         | month                      |      |   | 3 decimal places                 |
| 0072H~0073H | 114-115 | Occur time                 | 4    | R | Minute, hour, day, month         |
| 0074H       | 116     | THDUa                      | 2    | R |                                  |
| 0075H       | 117     | THDUb                      | 2    | R | Total distortion rate of voltage |
| 0076H       | 118     | THDUc                      | 2    | R | and current on each phase        |
| 0077H       | 119     | THDIa                      | 2    | R | Uint16                           |
| 0078H       | 120     | THDIb                      | 2    | R | 2 decimal places                 |
| 0079H       | 121     | THDIc                      | 2    | R | -                                |
|             |         | THUa(Harmonic              |      |   |                                  |
| 007AH       | 122     | on 2nd-31st)               | 2×30 | R |                                  |
|             |         | THUa(Harmonic              |      |   | Harmonic voltage on 2nd-31st     |
| 0098H       | 152     | on 2nd-31st)               | 2×30 | R | Uint16                           |
|             |         | THUb(Harmonic              |      |   | 2 decimal places                 |
| 00B6H       | 182     | on 2nd-31st)               | 2×30 | R |                                  |
|             |         | THUc(Harmonic              |      |   |                                  |
| 00D4H       | 212     |                            | 2×30 | R |                                  |
|             |         | on 2nd-31st)               |      |   | Harmonic current on 2nd-31st     |
| 00F2H       | 242     | THIa(Harmonic              | 2×30 | R | Uint16                           |
|             |         | on 2nd-31st)               |      |   | 2 decimal places                 |
| 0110H       | 272     | THIb(Harmonic              | 2×30 | R |                                  |
| •           |         | on 2nd-31st)               |      |   |                                  |

| <b>F</b> |     |                    | 1  | 1   |                                      |
|----------|-----|--------------------|----|-----|--------------------------------------|
|          |     | Fundamental        |    |     |                                      |
| 012EH    | 302 | voltage on A       | 2  | R   |                                      |
|          |     | phase              |    |     |                                      |
|          |     | Fundamental        |    |     |                                      |
| 012FH    | 303 | voltage on B       | 2  | R   |                                      |
|          |     | phase              |    |     |                                      |
|          |     | Fundamental        |    |     | Uint16                               |
| 0130H    | 304 | voltage on C       | 2  | R   | unit V                               |
| 015011   | 504 | phase              | 2  | K   | 1 decimal places                     |
|          |     | _                  |    |     | i decimai piaces                     |
| 0131H    | 305 | Harmonic voltage   | 2  | R   |                                      |
|          |     | on A phase         |    |     |                                      |
| 0132H    | 306 | Harmonic voltage   | 2  | R   |                                      |
| 013211   | 500 | on B phase         | 2  | IX. |                                      |
| 012211   | 207 | Harmonic voltage   | 2  | D   |                                      |
| 0133H    | 307 | on C phase         | 2  | R   |                                      |
|          |     | Fundamental        |    |     |                                      |
| 0134H    | 308 | current on A phase | 2  | R   |                                      |
|          |     | Fundamental        |    |     |                                      |
| 0135H    | 309 |                    | 2  | R   |                                      |
|          |     | current on B phase |    |     |                                      |
| 0136H    | 310 | Fundamental        | 2  | R   | Uint16<br>unit A<br>2 decimal places |
|          |     | current on C phase |    |     |                                      |
| 0137H    | 311 | Harmonic current   | 2  | R   |                                      |
| 013711   |     | on A phase         | 2  | К   | 2 decimal places                     |
|          | 312 | Harmonic current   |    |     |                                      |
| 0138H    |     | on B phase         | 2  | R   |                                      |
|          |     | Harmonic current   |    |     |                                      |
| 0139Н    | 313 | on C phase         | 2  | R   |                                      |
|          |     | Fundamental        |    |     |                                      |
| 012.444  | 214 |                    |    | P   |                                      |
| 013AH    | 314 | active power on A  | 4  | R   |                                      |
|          |     | phase              |    |     |                                      |
|          |     | Fundamental        |    |     |                                      |
| 013CH    | 316 | active power on B  | 4  | R   | Int32                                |
|          |     | phase              |    |     | unit kW                              |
|          |     | Fundamental        |    |     | 3 decimal places                     |
| 013EH    | 318 | active power on C  | 4  | R   |                                      |
|          |     | phase              |    |     |                                      |
|          |     | Fundamental        |    |     |                                      |
| 0140H    | 320 |                    | 4  | R   |                                      |
|          |     | active power       |    |     |                                      |
|          |     | Fundamental        |    |     |                                      |
| 0142H    | 322 | reactive power on  | 4  | R   | Int32                                |
|          |     | A phase            |    |     | unit kVar                            |
|          |     | Fundamental        |    |     |                                      |
| 0144H    | 324 | reactive power on  | 4  | R   | 3 decimal places                     |
|          |     | B phase            |    |     |                                      |
|          |     | _                  | 10 |     |                                      |

|        |     |                   |   | 1     |                  |
|--------|-----|-------------------|---|-------|------------------|
| 01461  | 226 | Fundamental       |   | D     |                  |
| 0146H  | 326 | reactive power on | 4 | R     |                  |
|        |     | C phase           |   |       |                  |
| 0148H  | 328 | Fundamental       | 4 | R     |                  |
|        |     | reactive power    |   |       |                  |
| 014AH  | 330 | Harmonic active   | 4 | R     |                  |
| 01.111 | 220 | power on A phase  |   |       |                  |
| 014CH  | 332 | Harmonic active   | 4 | R     | Int32            |
| 014011 | 552 | power on B phase  | - | K     | unit kW          |
| 014EH  | 334 | Harmonic active   | 4 | R     | 3 decimal places |
| 014EH  | 554 | power on C phase  | 4 | К     | 5 decimal places |
| 015011 | 22( | Harmonic active   | 4 | D     |                  |
| 0150H  | 336 | power             | 4 | R     |                  |
|        |     | Harmonic reactive |   |       |                  |
| 0152H  | 338 | power on A phase  | 4 | R     |                  |
|        |     | Harmonic reactive |   |       |                  |
| 0154H  | 340 | power on B phase  | 4 | R     | Int32            |
|        |     | Harmonic reactive |   |       | unit kVar        |
| 0156H  | 342 | power on C phase  | 4 | R     | 3 decimal places |
|        |     | Harmonic reactive |   |       |                  |
| 0158H  | 344 | power             | 4 | R     |                  |
|        |     |                   |   |       |                  |
| 015AH  | 346 | Current forward   | 4 | R     | Uint32           |
|        |     | active demand     |   |       | unit kW          |
| 015CH  | 348 | Current reversing | 4 | R     | 3 decimal places |
| 015011 | 540 | active demand     | - | K     | 1                |
|        |     | Current forward   |   |       |                  |
| 015EH  | 350 |                   | 4 | R     | Uint32           |
|        |     | reactive demand   |   |       | unit kVar        |
| 0160H  | 352 | Current reversing | 4 | R     | 3 decimal places |
|        |     | reactive demand   |   |       |                  |
| 0162H  | 354 | Voltage imbalance | 2 | R     | Uint16           |
|        |     |                   |   |       | unit 0.01%       |
| 0163H  | 355 | Current imbalance | 2 | R     | unit 0.0176      |
|        |     | Temperature on A  |   | _     |                  |
| 0164H  | 356 | phase             | 2 | R     |                  |
|        |     | Temperature on B  |   |       | Int16            |
| 0165H  | 357 | phase             | 2 | R     | unit 0.1°C       |
|        |     | Temperature on C  |   |       |                  |
| 0166H  | 358 | phase             | 2 | R     |                  |
|        |     | Time zone         |   |       |                  |
| 0167H  | 359 | number/Time zone  | 2 | R/W   |                  |
| 010/11 | 557 | date: day         | - | 10 11 | Time list        |
| 0168H  | 360 | Time zone date:   | 2 | R/W   |                  |
| 010011 | 500 | The zone date.    | 4 | IV. W |                  |

| [       |         | month/Time zone                      |    |        |                  |
|---------|---------|--------------------------------------|----|--------|------------------|
|         |         | number                               |    |        |                  |
|         |         |                                      |    |        |                  |
| 01 (011 | 2(1     | Time zone date:                      | 2  | D /III |                  |
| 0169H   | 361     | day/ Time zone                       | 2  | R/W    |                  |
|         |         | date: month                          |    |        |                  |
|         |         | Time zone                            |    |        |                  |
| 016AH   | 362     | number/Time zone                     | 2  | R/W    |                  |
|         |         | date: day                            |    |        |                  |
|         |         | Time zone date:                      |    |        |                  |
| 016BH   | 363     | month/Time zone                      | 2  | R/W    |                  |
|         |         | number                               |    |        |                  |
|         |         | Time zone date:                      |    |        |                  |
| 016CH   | 364     | day/ Time zone                       | 2  | R/W    |                  |
|         |         | date: month                          |    |        |                  |
|         |         | 1-14 period of                       |    |        |                  |
| 016DH   |         | time Parameters                      |    |        |                  |
|         | 365-385 | setting                              | 2  | R/W    | 1# time list     |
| 0181H   |         | information                          |    |        |                  |
|         |         |                                      |    |        |                  |
| 0182H   |         | 1-14 period of                       |    |        |                  |
|         | 386-406 | time Parameters                      | 2  | R/W    | 2# time list     |
| 0196Н   |         | setting                              |    |        |                  |
|         |         | information                          |    |        |                  |
| 0197H   | 407     | Current total spike                  | 4  | R      |                  |
| 017/11  | 107     | active energy                        | •  | IX.    |                  |
| 0199H   | 409     | Current total peak                   | 4  | R      |                  |
| 019911  | 409     | active energy                        | 4  | K      |                  |
| 010011  | 411     | Current total flat                   | 4  | D      |                  |
| 019BH   | 411     | active energy                        | 4  | R      |                  |
|         |         | Current total                        |    |        |                  |
| 019DH   | 413     | valley active                        | 4  | R      |                  |
|         |         | energy                               |    |        |                  |
|         |         | Current total spike                  |    |        |                  |
| 019FH   | 415     | forward active                       | 4  | R      | Uint32           |
| 019111  | 115     | energy                               | •  | IX.    | unit kWh         |
|         |         |                                      |    |        | 2 decimal places |
| 01A1H   | 417     | Current total peak<br>forward active | 4  | R      |                  |
| UIAIH   | 41/     |                                      | 4  | К      |                  |
|         |         | energy                               |    |        |                  |
|         |         | Current total flat                   |    |        |                  |
| 01A3H   | 419     | forward active                       | 4  | R      |                  |
|         |         | energy                               |    |        |                  |
|         |         | Current total                        |    |        |                  |
| 01A5H   | 421     | valley forward                       | 4  | R      |                  |
|         |         | active energy                        |    |        |                  |
| 01A7H   | 423     | Current total spike                  | 4  | R      |                  |
|         |         | _                                    | 20 | 1      |                  |

|         |     | reversing active    |   |        |                  |
|---------|-----|---------------------|---|--------|------------------|
|         |     | energy              |   |        |                  |
|         |     |                     |   |        |                  |
| 014011  | 425 | Current total peak  | 4 | D      |                  |
| 01A9H   | 425 | reversing active    | 4 | R      |                  |
|         |     | energy              |   |        |                  |
|         |     | Current total flat  |   |        |                  |
| 01ABH   | 427 | reversing active    | 4 | R      |                  |
|         |     | energy              |   |        |                  |
|         |     | Current total       |   |        |                  |
| 01ADH   | 429 | valley reversing    | 4 | R      |                  |
|         |     | active energy       |   |        |                  |
|         |     | Current total spike |   |        |                  |
| 01AFH   | 431 | forward reactive    | 4 | R      |                  |
|         |     | energy              |   |        |                  |
|         |     | Current total peak  |   |        |                  |
| 01B1H   | 433 | forward reactive    | 4 | R      |                  |
|         |     | energy              |   |        |                  |
|         |     | Current total flat  |   |        |                  |
| 01B3H   | 435 | forward reactive    | 4 | R      |                  |
|         |     | energy              |   |        |                  |
|         |     | Current total       |   |        |                  |
| 01B5H   | 437 | valley forward      | 4 | R      |                  |
| 012011  | /   | reactive energy     |   |        | Uint32           |
|         |     | Current total spike |   |        | unit kVarh       |
| 01B7H   | 439 | reversing reactive  | 4 | R      | 2 decimal places |
| 01D/11  | -37 | -                   | т | ĸ      |                  |
|         |     | energy              |   |        |                  |
| 01B9H   | 441 | Current total peak  | 4 | D      |                  |
| 01B9H   | 441 | reversing reactive  | 4 | R      |                  |
|         |     | energy              |   |        |                  |
| 01551   |     | Current total flat  |   |        |                  |
| 01BBH   | 443 | reversing reactive  | 4 | R      |                  |
|         |     | energy              |   |        |                  |
|         |     | Current total       |   |        |                  |
| 01BDH   | 445 | valley reversing    | 4 | R      |                  |
|         |     | reactive energy     |   |        |                  |
| 01BFH   | 447 | wireless signal     | 2 | R      | Int16            |
| 01DI II |     | strength            | 2 | К      | Intro            |
| 01 0011 | 448 |                     | 2 | D /11/ | High byte:Hour,  |
| 01C0H   |     | Freeze time         | 2 | R/W    | low byte:DAY     |
|         |     |                     |   |        | Uint16           |
| 01C1H   | 449 | Aftercurrent        | 2 | R      | unit mA          |
|         |     |                     |   |        | Uint16           |
| 01C2H   | 450 | DO1                 | 2 | R/W    | Bit0 effective   |
|         |     |                     |   |        | Bits encenve     |

| 01C3H       | 451     | DO2                                                             | 2 | R/W | Uint16<br>Bit0 effective                     |
|-------------|---------|-----------------------------------------------------------------|---|-----|----------------------------------------------|
| 01С4Н       | 452     | Demand cycle                                                    | 2 | R/W | 1: 15min<br>2: 30min<br>3: 45min<br>4: 60min |
| 01C5H-01CFH | 453-463 | reserved                                                        |   |     |                                              |
| 01DOH-01EBH | 464-491 | Related data of<br>alarm 1, see<br>section 6.3.1 for<br>details |   |     |                                              |
| 01ECH       | 492     | A phase voltage<br>Angle                                        | 2 | R   |                                              |
| 01EDH       | 493     | B phase voltage<br>Angle                                        | 2 | R   | Uint16<br>2 decimal places                   |
| O1EEH       | 494     | C phase voltage<br>Angle                                        | 2 | R   |                                              |
| 01EFH       | 495     | reserved                                                        |   |     |                                              |
| 01F0H       | 496     | Protocol selection<br>bit                                       | 2 | R/W | 0: 安全用电<br>1: 电力运维                           |
| 01F2H       | 498     | Real-time<br>perceived demand                                   | 4 | R   | Uint32<br>unit kVA<br>3 decimal places       |
| 01F4H       | 500     | Combined reactive electric energy                               | 4 | R   |                                              |
| 01F6H       | 502     | Current first<br>quadrant of<br>reactive energy                 | 4 | R   |                                              |
| 01F8H       | 504     | Current second<br>quadrant reactive<br>energy                   | 4 | R   | Uint32<br>unit kVarh                         |
| 01FAH       | 506     | Current third<br>quadrant of<br>reactive energy                 | 4 | R   | 3 decimal places                             |
| 01FCH       | 508     | Current fourth<br>quadrant reactive<br>energy                   | 4 | R   |                                              |
| O1FEH       | 510     | A phase current<br>Angle                                        | 2 | R   | Uint16<br>2 decimal places                   |
| 01FFH       | 511     | B phase current<br>Angle                                        | 2 | R   |                                              |
| 0200H       | 512     | C phase current<br>Angle                                        | 2 | R   |                                              |

| 0201H-0215H | 513-533 | 1-14 period of<br>time Parameters<br>setting<br>information                 | 2 | R/W | 3# time list |
|-------------|---------|-----------------------------------------------------------------------------|---|-----|--------------|
| 0216H-0249H | 534-585 | Related data of<br>alarm 2 and alarm<br>3, see section<br>6.3.2 for details |   |     |              |
| 024AH-0267H | 586-615 | reserved                                                                    |   |     |              |
| 0268H-0169H | 616-617 | Alarm status of<br>alarm 2 and alarm<br>3, see section<br>6.3.2 for details |   |     |              |

## 6.3 Alarm function related Settings

## 6.3.1 Alarm 1 related parameter register address table

| Start Address<br>(Hexadecimal) | Start Address<br>(Decimal) | Variable          | Length | R/W | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|----------------------------|-------------------|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O1EBH                          | 491                        | Alarm 1<br>status | 2      | R   | Bit0: overvoltage alarm<br>permission bits<br>Bit1: undervoltage alarm<br>permission bits<br>Bit2: overcurrent alarm<br>permission bits<br>Bit3: undercurrent alarm<br>permission bits<br>Bit4: overpower alarm<br>permission bits<br>Bit5: underpower alarm<br>permission bits<br>Bit5: underpower alarm<br>bit7:DO2alarm<br>Bit8:Phase A loses current<br>alarm<br>Bit9:Phase B loses current<br>alarm<br>Bit10:Phase C loses current<br>alarm |

| 01ДОН  | 464 | Alarm permission bits           | 2 | R/W   | Bit12:Phase B loses voltaget<br>alarm<br>Bit13:Phase C loses voltaget<br>alarm<br>Bit14:Phase sequence error<br>alarm<br>Bit15:Power is reported<br>Bit0: overvoltage alarm<br>permission bits<br>Bit1: undervoltage alarm<br>permission bits<br>Bit2: overcurrent alarm<br>permission bits<br>Bit3: undercurrent alarm<br>permission bits<br>Bit4: overpower alarm<br>permission bits<br>Bit5: underpower alarm<br>permission bits<br>Bit5: underpower alarm<br>permission bits<br>Bit5: underpower alarm<br>permission bits<br>Bit5: underpower alarm<br>permission bits<br>Bit6:DO1alarm bits<br>Bit6:DO1alarm bits<br>Bit8:Phase A loses current<br>alarm bits<br>Bit9:Phase B loses current<br>alarm bits |
|--------|-----|---------------------------------|---|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |     |                                 |   |       | alarm bits<br>Bit11:Phase A loses voltaget<br>alarm bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |     |                                 |   |       | Bit12:Phase B loses voltaget<br>alarm bits<br>Bit13:Phase C loses voltaget<br>alarm bits<br>Bit14:Phase sequence error<br>alarm bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |     |                                 |   |       | Bit15:Power is reported bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 01D1H  | 465 | overvoltage alarm<br>threshold  | 2 | R/W   | Uint16<br>unit 0.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 01D2H  | 466 | overvoltage alarm<br>time-delay | 2 | R/W   | Uint16<br>unit 0.01S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 01D3H  | 467 | undervoltage alarm              | 2 | R/W   | Uint16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 012011 | 107 | threshold                       | - | 10.11 | unit 0.1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|         | -   |                                  |   |       | TT                        |
|---------|-----|----------------------------------|---|-------|---------------------------|
| 01D4H   | 468 | undervoltage alarm<br>time-delay | 2 | R/W   | Uint16<br>unit 0.01S      |
|         |     | overcurrent alarm                |   |       | Uint16                    |
| 01D5H   | 469 | threshold                        | 2 | R/W   | unit 0.01A                |
| 01D(11  | 470 | Overcurrent alarm                | 2 | D/W   | Uint16                    |
| 01D6H   | 470 | time-delay                       | 2 | R/W   | unit 0.01S                |
|         |     | undercurrent alarm               |   |       | Uint16                    |
| 01D7H   | 471 | threshold                        | 2 | R/W   | unit 0.01A                |
|         |     | undercurrent alarm               |   |       | Uint16                    |
| 01D8H   | 472 | time-delay                       | 2 | R/W   | unit 0.01S                |
|         |     | overpower alarm                  |   |       | Uint16                    |
| 01D9H   | 473 | threshold                        | 2 | R/W   | unit 0.001kw              |
|         |     | overpower alarm                  |   |       | Uint16                    |
| 01DAH   | 474 | time-delay                       | 2 | R/W   | unit 0.01S                |
|         |     | underpower alarm                 |   |       | Uint16                    |
| 01DBH   | 475 | threshold                        | 2 | R/W   | unit 0.001kw              |
|         |     |                                  |   |       | Uint16                    |
| 01DCH   | 476 | underpower alarm                 | 2 | R/W   | unit 0.01S                |
|         |     | time-delay                       |   |       |                           |
| 01DDH   | 477 | DI1 Original state               | 2 | R/W   | 0:Normal Open             |
|         |     |                                  |   |       | 1:Normal Close            |
|         | 478 | DI1 Setting                      | 2 | R/W   | 0:Not associated to DO    |
| 01DEH   |     |                                  |   |       | 1:Associated to DO1       |
|         |     |                                  |   |       | 2:Associated to DO2       |
| 01DFH   | 479 | DI2 Original state               | 2 | R/W   | 0:Normal Open             |
| 010111  | 777 | Diz Original state               | 2 | 10 10 | 1:Normal Close            |
|         |     |                                  |   |       | 0:Not associated to DO    |
| 01E0H   | 480 | DI2 Setting                      | 2 | R/W   | 1:Associated to DO1       |
|         |     |                                  |   |       | 2:Associated to DO2       |
| 015111  | 401 |                                  | 2 | D /W/ | 0:Normal Open             |
| 01E1H   | 481 | DI3 Original state               | 2 | R/W   | 1:Normal Close            |
|         |     |                                  |   |       | 0:Not associated to DO    |
| 01E2H   | 482 | DI3 Setting                      | 2 | R/W   | 1:Associated to DO1       |
|         |     |                                  |   |       | 2:Associated to DO2       |
|         |     |                                  |   |       | 0:Normal Open             |
| 01E3H   | 483 | DI4 Original state               | 2 | R/W   | 1:Normal Close            |
|         |     |                                  |   |       | 0:Not associated to DO    |
| 01E4H   | 484 | DI4 Setting                      | 2 | R/W   | 1:Associated to DO1       |
| 01D III | 101 | Dirsetting                       | 2 | 10 11 | 2:Associated to DO2       |
|         |     |                                  |   |       | 0:Electrical level        |
| 01E5H   | 485 | DO1 Output mode                  | 2 | R/W   | 1:Purse                   |
|         |     |                                  |   |       |                           |
|         |     |                                  | 2 |       | 0:DO                      |
| 01E6H   | 486 |                                  |   | R/W   | 1: Total failure          |
|         |     | DO1 Related content              |   |       | 2: Total failure +DI1+DI2 |
|         |     |                                  |   |       | 3:DI1                     |

|        |     |                     |   |       | 4:DI2                     |
|--------|-----|---------------------|---|-------|---------------------------|
|        |     |                     |   |       | 5:DI1+DI2                 |
|        |     |                     |   |       | 0:None                    |
|        |     |                     |   |       | 1:1S                      |
| 01E7H  | 487 | DO1 Output pulse    | 2 | R/W   | 2:28                      |
| 012711 | 40/ | width               | 2 | K/ W  | 3:38                      |
|        |     |                     |   |       | 4:4S                      |
|        |     |                     |   |       | 5:58                      |
| 01E8H  | 488 | DO2 Output mode     | 2 | R/W   | 0: Electrical level       |
| 012011 | 100 | DO2 Output mode     | 2 | 10 ** | 1:Purse                   |
|        | 489 | DO2 Related content | 2 | R/W   | 0:DO                      |
|        |     |                     |   |       | 1:Total failure           |
| 01E9H  |     |                     |   |       | 2: Total failure +DI1+DI2 |
| 012911 |     |                     |   |       | 3:DI1                     |
|        |     |                     |   |       | 4:DI2                     |
|        |     |                     |   |       | 5:DI1+DI2                 |
|        |     |                     |   |       | 0:None                    |
|        |     |                     |   |       | 1:1S                      |
| 01EAH  | 490 | DO2 Output pulse    | 2 | D/W   | 2:28                      |
| VIEAN  | 490 | width               | 2 | R/W   | 3:38                      |
|        |     |                     |   |       | 4:4S                      |
|        |     |                     |   |       | 5:58                      |

## 6.3.2 Alarm 2, alarm 3 related parameter register address table

| Start<br>Address<br>(Hexadeci<br>mal) | Start Address<br>(Decimal) | Variable            | Length | R/W | Notes                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|----------------------------|---------------------|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0216H                                 | 534                        | Alarm 2 allowed bit | 2      | R/W | <ul> <li>Bit0:A phase power factor is<br/>too low alarm allowed bit</li> <li>Bit1:B phase power factor is<br/>too low alarm allowed bit</li> <li>Bit2:C phase power factor is<br/>too low alarm allowed bit</li> <li>Bit3:Total power factor is too<br/>low alarm allowed bit</li> <li>Bit4:Phase A overtemperature<br/>alarm allowed bit</li> <li>Bit5:Phase B overtemperature<br/>alarm allowed bit</li> </ul> |

|       |     |                      |   |     | Bit6:Phase C overtemperature alarm allowed bit                                                                                                                                                                                                                                                                                                                                                                               |
|-------|-----|----------------------|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |     |                      |   |     | bit7:Phase N overtemperature<br>alarm allowed bit                                                                                                                                                                                                                                                                                                                                                                            |
|       |     |                      |   |     | Bit8:UA Total distortion is<br>too high alarm allowed bit<br>Bit9:UB Total distortion is<br>too high alarm allowed bit<br>Bit10:UC Total distortion is<br>too high alarm allowed bit<br>Bit11:IA Total distortion is<br>too high alarm allowed bit<br>Bit12:IB Total distortion is<br>too high alarm allowed bit<br>Bit13:IC Total distortion is<br>too high alarm allowed bit<br>Bit14:Voltage imbalance                    |
|       |     |                      |   |     | exceeds the high alarm<br>allowed bit                                                                                                                                                                                                                                                                                                                                                                                        |
|       |     |                      |   |     | Bit15:Current imbalance<br>exceeds the high alarm                                                                                                                                                                                                                                                                                                                                                                            |
|       |     |                      |   |     | allowed bit                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0268H | 616 | Alarm 2 Alarm status | 2 | R   | Corresponding to alarm 2 permit bit                                                                                                                                                                                                                                                                                                                                                                                          |
| 0217H | 535 | Alarm 3 allowed bit  | 2 | R/W | Bit0:The current positive<br>active power demand is too<br>high alarm permission bit<br>Bit1:The current reverse<br>active power demand is too<br>high alarm allow bit<br>Bit2:The current positive<br>reactive power demand is too<br>high alarm allowed bit<br>Bit3:The current reverse<br>reactive power demand is too<br>high alarm allowed bit<br>Bit4:The current view is that<br>excessive demand alarm is<br>allowed |

|       |     |                                                          |   |     | Bit5-Bit15:reserved                 |
|-------|-----|----------------------------------------------------------|---|-----|-------------------------------------|
| 0269Н | 617 | Alarm 3 Alarm status                                     | 2 | R   | Corresponding to alarm 3 permit bit |
| 0218H | 536 | The a-phase power factor excessive alarm 2 R/W threshold |   | R/W | Uint16<br>Unit 0.001                |
| 0219H | 537 | The a-phase power factor excessive alarm delay           | 2 | R/W | Uint16<br>Unit 0.01S                |
| 021AH | 538 | The b-phase power factor excessive alarm<br>threshold    | 2 | R/W | Uint16<br>Unit 0.001                |
| 021BH | 539 | The b-phase power factor excessive alarm delay           | 2 | R/W | Uint16<br>Unit 0.01S                |
| 021CH | 540 | The c-phase power factor excessive alarm<br>threshold    | 2 | R/W | Uint16<br>Unit 0.001                |
| 021DH | 541 | The c-phase power factor excessive alarm<br>delay        | 2 | R/W | Uint16<br>Unit 0.01S                |
| 021EH | 542 | total power factor excessive alarm<br>threshold          | 2 | R/W | Uint16<br>Unit 0.001                |
| 021FH | 543 | total power factor excessive alarm delay                 | 2 | R/W | Uint16<br>Unit 0.01S                |
| 0220H | 544 | A phase overtemperature alarm threshold                  | 2 | R/W | Uint16<br>Unit 0.1 °C               |
| 0221H | 545 | A phase overtemperature alarm delay                      | 2 | R/W | Uint16<br>Unit 0.01S                |
| 0222H | 546 | B phase overtemperature alarm threshold                  | 2 | R/W | Uint16<br>Unit 0.1 °C               |
| 0223Н | 547 | B phase overtemperature alarm delay                      | 2 | R/W | Uint16<br>Unit 0.01S                |
| 0224H | 548 | C phase overtemperature alarm threshold                  | 2 | R/W | Uint16<br>Unit 0.1℃                 |
| 0225H | 549 | C phase overtemperature alarm delay                      | 2 | R/W | Uint16<br>Unit 0.01S                |
| 0226Н | 550 | N phase overtemperature alarm threshold                  | 2 | R/W | Uint16<br>Unit 0.1℃                 |
| 0227H | 551 | N phase overtemperature alarm delay                      | 2 | R/W | Uint16<br>Unit 0.01S                |
| 0228H | 552 | UA total distortion excessive alarm<br>threshold         | 2 | R/W | Uint16<br>2 decimal places          |
| 0229Н | 553 | UA total distortion excessive alarm delay                | 2 | R/W | Uint16<br>Unit 0.01S                |
| 022AH | 554 | UB total distortion excessive alarm<br>threshold         | 2 | R/W | Uint16<br>2 decimal places          |
| 022BH | 555 | UB total distortion excessive alarm delay                | 2 | R/W | Uint16<br>Unit 0.01S                |

| int16<br>nal places<br>int16<br>t 0.01S<br>int16<br>nal places<br>int16<br>t 0.01S<br>int16<br>nal places<br>int16 |
|--------------------------------------------------------------------------------------------------------------------|
| t 0.01S<br>int16<br>nal places<br>int16<br>t 0.01S<br>int16<br>nal places                                          |
| int16<br>nal places<br>int16<br>t 0.01S<br>int16<br>nal places                                                     |
| nal places<br>int16<br>t 0.01S<br>int16<br>nal places                                                              |
| t 0.01S<br>int16<br>nal places                                                                                     |
| int16<br>nal places                                                                                                |
| nal places                                                                                                         |
| -                                                                                                                  |
| int16                                                                                                              |
| liitio                                                                                                             |
| t 0.01S                                                                                                            |
| int16                                                                                                              |
| nal places                                                                                                         |
| int16                                                                                                              |
| t 0.01S                                                                                                            |
| int16                                                                                                              |
| 0.01%                                                                                                              |
| int16                                                                                                              |
| t 0.01S                                                                                                            |
| int16                                                                                                              |
| 0.01%                                                                                                              |
| int16<br>t 0.01S                                                                                                   |
| int32                                                                                                              |
| it kW                                                                                                              |
| nal places                                                                                                         |
| int16                                                                                                              |
| t 0.01S                                                                                                            |
| int32                                                                                                              |
| it kW                                                                                                              |
| nal places                                                                                                         |
| int16                                                                                                              |
| t 0.01S                                                                                                            |
| int32                                                                                                              |
| t Kvar                                                                                                             |
| nal places                                                                                                         |
| int16                                                                                                              |
| t 0.01S                                                                                                            |
| int32                                                                                                              |
| t Kvar                                                                                                             |
| nal places                                                                                                         |
| int16                                                                                                              |
|                                                                                                                    |

|       |     | demand is too high alarm delay             |   |       | Unit 0.01S       |
|-------|-----|--------------------------------------------|---|-------|------------------|
| 0244H | 580 | Excessive residual current alarm threshold |   |       | Uint32           |
|       |     |                                            | 4 | R/W   | Unit A           |
|       |     |                                            |   |       | 3 decimal places |
| 0246H | 582 | Excessive residual current alarm delay     | 2 | R/W   | Uint16           |
|       |     |                                            | 2 | K/W   | Unit 0.01S       |
| 0247H | 583 | Current perceived excessive demand         |   |       | Uint32           |
|       |     | alarm threshold                            | 4 | R/W   | Unit KVA         |
|       |     |                                            |   |       | 3 decimal places |
| 0249H | 585 | Excessive demand is currently seen as      | 2 | 2 R/W | Uint16           |
|       |     | alarm delay                                |   |       | Unit 0.01S       |

## table1:

| Start Address<br>(Hexadecimal) | Start Address (Decimal) | Variable                         | Length | R/W | Notes                |
|--------------------------------|-------------------------|----------------------------------|--------|-----|----------------------|
| 8000                           | 32768                   | Voltage of Aphase                | 2      | R   |                      |
| 8002                           | 32770                   | Voltage of B phase               | 2      | R   |                      |
| 8004                           | 32772                   | Voltage of C phase               | 2      | R   | float32              |
| 8006                           | 32774                   | Voltage between A-B              | 2      | R   | unit V               |
| 8008                           | 32776                   | Voltage between B-C              | 2      | R   |                      |
| 800A                           | 32778                   | Voltage between C-A              | 2      | R   |                      |
| 800C                           | 32780                   | Current of Aphase                | 2      | R   |                      |
| 800E                           | 32782                   | Current of B phase               | 2      | R   | float32              |
| 8010                           | 32784                   | Current of C phase               | 2      | R   | unit A               |
| 8012                           | 32786                   | Vector sum of<br>3-phase current | 2      | R   |                      |
| 8014                           | 32788                   | Active power of A phase          | 2      | R   |                      |
| 8016                           | 32790                   | Active power of B<br>phase       | 2      | R   | float32              |
| 8018                           | 32792                   | Active power of C<br>phase       | 2      | R   | unit kW              |
| 801A                           | 32794                   | Total active power               | 2      | R   |                      |
| 801C                           | 32796                   | Reactive power of A phase        | 2      | R   | float32<br>unit kVar |

| 801E | 32798 | Reactive power of B phase    | 2 | R |                    |
|------|-------|------------------------------|---|---|--------------------|
| 8020 | 32800 | Reactive power of C<br>phase | 2 | R |                    |
| 8022 | 32802 | Total reactive<br>power      | 2 | R |                    |
| 8024 | 32804 | Apparent power of A phase    | 2 | R |                    |
| 8026 | 32806 | Apparent power of B phase    | 2 | R | float32            |
| 8028 | 32808 | Apparent power of C phase    | 2 | R | unit kVA           |
| 802A | 32810 | Total apparent power         | 2 | R |                    |
| 802C | 32812 | Power factor of A phase      | 2 | R |                    |
| 802E | 32814 | Power factor of B phase      | 2 | R | float32            |
| 8030 | 32816 | Power factor of C phase      | 2 | R | 1104102            |
| 8032 | 32818 | Total power factor           | 2 | R |                    |
| 8034 | 32820 | Frequency of power           | 2 | R | float32<br>unit HZ |
| 8036 | 32822 | The average phase voltage    | 2 | R | float32            |
| 8038 | 32824 | Line voltage average         | 2 | R | unit v             |
| 803A | 32826 | Current average              | 2 | R | float32<br>unit A  |
| 803C | 32828 | Voltage imbalance            | 2 | R | float32            |
| 803E | 32830 | Current imbalance            | 2 | R | unit 0.1%          |
| 8040 | 32832 | residual voltage             | 2 | R | float32<br>unit v  |
| 8042 | 32834 | residual current             | 2 | R | float32<br>unit A  |
| 8044 | 32836 | A Power Angle                | 2 | R |                    |
| 8046 | 32838 | B Power Angle                | 2 | R | float32            |
| 8048 | 32840 | C Power Angle                | 2 | R | unit 0.1°          |

| 804A | 32842 | Phase A voltage<br>angle | 2 | R |  |
|------|-------|--------------------------|---|---|--|
| 804C | 32844 | Phase B voltage<br>angle | 2 | R |  |

## Table 2 (Secondary Value):

| Start Address<br>(Hexadecimal) | Start Address<br>(Decimal) | Variable                                 | Length | R/W | Notes               |
|--------------------------------|----------------------------|------------------------------------------|--------|-----|---------------------|
| 887E                           | 34942                      | Total active energy                      | 2      | R   |                     |
| 8880                           | 34944                      | Forward active energy consumption        | 2      | R   | Uint32<br>unit kWh  |
| 8882                           | 34946                      | Reversing active energy consumption      | 2      | R   |                     |
| 8884                           | 34948                      | reserved                                 | 2      | R   |                     |
| 8886                           | 34950                      | Forward reactive energy consumption      | 2      | R   | Uint32<br>unit kVar |
| 8888                           | 34952                      | Reversing reactive<br>energy consumption | 2      | R   |                     |
| 888A                           | 34954                      | reserved                                 | 2      | R   | Uint32<br>unit kVAh |
| 888C                           | 34956                      | Current total spike<br>active energy     | 2      | R   |                     |
| 888E                           | 34958                      | Current total peak<br>active energy      | 2      | R   | Uint32<br>unit kWh  |
| 8890                           | 34960                      | Current total flat<br>active energy      | 2      | R   |                     |
| 8892 | 34962 | Current total valley<br>active energy               | 2 | R |                     |
|------|-------|-----------------------------------------------------|---|---|---------------------|
| 8894 | 34964 | Current total spike forward active energy           | 2 | R |                     |
| 8896 | 34966 | Current total peak<br>forward active energy         | 2 | R |                     |
| 8898 | 34968 | Current total flat<br>forward active energy         | 2 | R |                     |
| 889A | 34970 | Current total valley forward active energy          | 2 | R |                     |
| 889C | 34972 | Current total spike<br>reversing active<br>energy   | 2 | R |                     |
| 889E | 34974 | Current total peak<br>reversing active<br>energy    | 2 | R |                     |
| 88A0 | 34976 | Current total flat<br>reversing active<br>energy    | 2 | R |                     |
| 88A2 | 34978 | Current total valley<br>reversing active<br>energy  | 2 | R |                     |
| 88A4 | 34980 | Current total spike<br>forward reactive<br>energy   | 2 | R |                     |
| 88A6 | 34982 | Current total peak<br>forward reactive<br>energy    | 2 | R |                     |
| 88A8 | 34984 | Current total flat<br>forward reactive<br>energy    | 2 | R | Uint32<br>unit kVar |
| 88AA | 34986 | Current total valley<br>forward reactive<br>energy  | 2 | R |                     |
| 88AC | 34988 | Current total spike<br>reversing reactive<br>energy | 2 | R |                     |

|      |       | -                                        |   |   | -         |
|------|-------|------------------------------------------|---|---|-----------|
| 88AE | 34990 | Current total peak<br>reversing reactive | 2 | R |           |
|      |       | energy                                   | - |   |           |
|      |       | Current total flat                       |   |   |           |
| 88B0 | 34992 | reversing reactive                       | 2 | R |           |
|      |       | energy                                   |   |   |           |
|      |       | Current total valley                     |   |   |           |
| 88B2 | 34994 | reversing reactive                       | 2 | R |           |
|      |       | energy                                   |   |   |           |
| 88B4 | 34996 | Total active energy of                   | 2 | R |           |
| 0004 | 54770 | A phase                                  | 2 | K |           |
|      |       | Forward active                           |   |   |           |
| 88B6 | 34998 | energy consumption                       | 2 | R | Uint32    |
|      |       | of A phase                               |   |   | unit kWh  |
|      |       | Reversing active                         |   |   |           |
| 88B8 | 35000 | energy consumption                       | 2 | R |           |
|      |       | of A phase                               |   |   |           |
|      |       |                                          |   |   |           |
| 88BA | 35002 | reserved                                 | 2 | R | Uint32    |
|      |       |                                          |   |   | unit kVar |
|      |       | Forward reactive                         |   |   |           |
| 88BC | 35004 | energy consumption                       | 2 | R |           |
|      |       | of A phase                               |   |   | Uint32    |
|      |       | Reversing reactive                       |   |   | unit kVar |
| 88BE | 35006 | energy consumption                       | 2 | R |           |
|      |       | of A phase                               |   |   |           |
| 88C0 | 35008 | rocomical                                | 2 | R |           |
| 0000 | 55008 | reserved                                 | ۷ | К |           |
| 88C2 | 35010 | reserved                                 | 2 | R |           |
|      |       |                                          |   |   | Uint32    |
| 88C4 | 35012 | reserved                                 | 2 | R | unit kWh  |
|      |       |                                          |   |   |           |
| 88C6 | 35014 | reserved                                 | 2 | R |           |
|      | 55017 |                                          |   |   |           |
| 88C8 | 35016 | Total active energy of                   | 2 | R | Uint32    |
|      |       | B phase                                  | _ |   | unit kWh  |

| 88CA | 35018 | Forward active<br>energy consumption<br>of B phase     | 2 | R |                     |
|------|-------|--------------------------------------------------------|---|---|---------------------|
| 88CC | 35020 | Reversing active<br>energy consumption<br>of B phase   | 2 | R |                     |
| 88CE | 35022 | reserved                                               | 2 | R | Uint32<br>unit kVar |
| 88D0 | 35024 | Forward reactive<br>energy consumption<br>of B phase   | 2 | R | Uint32              |
| 88D2 | 35026 | Reversing reactive<br>energy consumption<br>of B phase |   | R | unit kVar           |
| 88D4 | 35028 | reserved                                               | 2 | R | Uint32              |
| 88D6 | 35030 | reserved                                               | 2 | R | unit kWh            |

Table (primary value):

| Start Address<br>(Hexadecimal) | Start Address<br>(Decimal) | Variable                               | Length | R/W | Notes                 |
|--------------------------------|----------------------------|----------------------------------------|--------|-----|-----------------------|
| 8800                           | 34816                      | Total active<br>energy                 | 2      | R   |                       |
| 8802                           | 34818                      | Forward active energy consumption      | 2      | R   | Float 32<br>unit kWh  |
| 8804                           | 34820                      | Reversing active<br>energy consumption | 2      | R   |                       |
| 8806                           | 34822                      | reserved                               | 2      | R   | float 32<br>unit kVar |

| 8808 | 34824 | Forward reactive<br>energy consumption             | 2 | R |                       |
|------|-------|----------------------------------------------------|---|---|-----------------------|
| 880A | 34826 | Reversing reactive<br>energy consumption           | 2 | R |                       |
| 880C | 34828 | reserved                                           | 2 | R | float 32<br>unit kVAh |
| 880E | 34830 | Current total spike<br>active energy               | 2 | R |                       |
| 8810 | 34832 | Current total peak<br>active energy                | 2 | R |                       |
| 8812 | 34834 | Current total flat<br>active energy                | 2 | R |                       |
| 8814 | 34836 | Current total valley<br>active energy              | 2 | R |                       |
| 8816 | 34838 | Current total spike<br>forward active<br>energy    | 2 | R |                       |
| 8818 | 34840 | Current total peak<br>forward active<br>energy     | 2 | R |                       |
| 881A | 34842 | Current total flat<br>forward active<br>energy     | 2 | R | float 32<br>unit kWh  |
| 881C | 34844 | Current total valley<br>forward active<br>energy   | 2 | R |                       |
| 881E | 34846 | Current total spike<br>reversing active<br>energy  | 2 | R |                       |
| 8820 | 34848 | Current total peak<br>reversing active<br>energy   | 2 | R |                       |
| 8822 | 34850 | Current total flat<br>reversing active<br>energy   | 2 | R |                       |
| 8824 | 34852 | Current total valley<br>reversing active<br>energy | 2 | R |                       |

|      |       | Commerci ( 1 1 1     |   |   |           |
|------|-------|----------------------|---|---|-----------|
| 0026 | 24054 | Current total spike  | 2 | 5 |           |
| 8826 | 34854 | forward reactive     | 2 | R |           |
|      |       | energy               |   |   |           |
|      |       | Current total peak   |   |   |           |
| 8828 | 34856 | forward reactive     | 2 | R |           |
|      |       | energy               |   |   |           |
|      |       | Current total flat   |   |   |           |
| 882A | 34858 | forward reactive     | 2 | R |           |
|      |       | energy               |   |   |           |
|      |       | Current total valley |   |   |           |
| 882C | 34860 | forward reactive     | 2 | R |           |
|      |       | energy               |   |   | float 32  |
|      |       | Current total spike  |   |   | unit kVar |
| 882E | 34862 | reversing reactive   | 2 | R |           |
|      |       | energy               |   |   |           |
|      |       | Current total peak   |   |   |           |
| 8830 | 34864 | reversing reactive   | 2 | R |           |
|      |       | energy               |   |   |           |
|      |       | Current total flat   |   |   |           |
| 8832 | 34866 | reversing reactive   | 2 | R |           |
|      |       | energy               |   |   |           |
|      |       | Current total valley |   |   |           |
| 8834 | 34868 | reversing reactive   | 2 | R |           |
|      |       | energy               |   |   |           |
|      |       |                      |   |   |           |
|      |       | Total active energy  |   |   |           |
| 8836 | 34870 | of A phase           | 2 | R |           |
|      |       | of A phase           |   |   |           |
|      |       |                      |   |   |           |
|      |       | Forward active       |   |   |           |
| 8838 | 34872 | energy               | 2 | R | float 32  |
| 0050 | 5-672 | consumption of A     | 4 |   | unit kWh  |
|      |       | phase                |   |   |           |
|      |       | Reversing active     |   |   |           |
|      |       |                      |   |   |           |
| 883A | 34874 | energy               | 2 | R |           |
|      |       | consumption of A     |   |   |           |
|      |       | phase                |   |   |           |

| 883C | 34876 | reserved                                                  | 2 | R | float 32<br>unit kVar |
|------|-------|-----------------------------------------------------------|---|---|-----------------------|
| 883E | 34878 | Forward reactive<br>energy<br>consumption of A<br>phase   | 2 | R | float 32              |
| 8840 | 34880 | Reversing<br>reactive energy<br>consumption of A<br>phase | 2 | R | unit kVar             |
| 8842 | 34882 | reserved                                                  | 2 | R |                       |
| 8844 | 34884 | reserved                                                  | 2 | R | float 32              |
| 8846 | 34886 | reserved                                                  | 2 | R | unit kWh              |
| 8848 | 34888 | reserved                                                  | 2 | R |                       |
| 884A | 34890 | Total active energy<br>of B phase                         | 2 | R |                       |
| 884C | 34892 | Forward active<br>energy<br>consumption of B<br>phase     | 2 | R | float 32<br>unit kWh  |
| 884E | 34894 | Reversing active<br>energy<br>consumption of B<br>phase   | 2 | R |                       |
| 8850 | 34896 | reserved                                                  | 2 | R | Float 32<br>unit kVar |
| 8852 | 34898 | Forward reactive<br>energy<br>consumption of B<br>phase   | 2 | R | float 32<br>unit kVar |

| 8854 | 34900 | Reversing<br>reactive energy<br>consumption of B<br>phase | 2 | R |                      |
|------|-------|-----------------------------------------------------------|---|---|----------------------|
| 8856 | 34902 | reserved                                                  | 2 | R | float 32<br>unit kWh |

# 6.4 Historical Data Memory

| Start address (high byte) | Data type                   |
|---------------------------|-----------------------------|
| 48-53H                    | Last 1 month-last 12 months |

| Start address | Data type                                  |
|---------------|--------------------------------------------|
| (low byte)    |                                            |
| 00H           | Record date and time                       |
| 03H           | History total active energy                |
| 05H           | History total forward active energy        |
| 07H           | History total reversing active energy      |
| 09H           | History total forward reactive energy      |
| 0BH           | History total reversing reactive energy    |
| 0DH           | Total active energy on A phase             |
| 0FH           | Total forward active energy on A phase     |
| 11H           | Total reversing active energy on A phase   |
| 13H           | Total forward reactive energy on A phase   |
| 15H           | Total reversing reactive energy on A phase |
| 17H           | Total active energy on B phase             |
| 19H           | Total forward active energy on B phase     |
| 1BH           | Total reversing active energy on B phase   |
| 1DH           | Total forward reactive energy on B phase   |
| 1FH           | Total reversing reactive energy on B phase |
| 21H           | Total active energy on C phase             |
| 23H           | Total forward active energy on C phase     |
| 25H           | Total reversing active energy on C phase   |
| 27H           | Total forward reactive energy on C phase   |
| 29H           | Total reversing reactive energy on C phase |
| 2BH           | Current spike electric energy              |
| 2DH           | Current peak electric energy               |
| 2FH           | Current flat electric energy               |
| 31H           | Current valley electric energy             |

| 33Н | Current forward active spike electric energy      |
|-----|---------------------------------------------------|
| 35H | Current forward active peak electric energy       |
| 37H | Current forward active flat electric energy       |
| 39Н | Current forward active valley electric energy     |
| 3BH | Current reversing active spike electric energy    |
| 3DH | Current reversing Active peak electric energy     |
| 3FH | Current reversing active flat electric energy     |
| 41H | Current reversing Active valley electric energy   |
| 43H | Current forward reactive spike electric energy    |
| 45H | Current forward reactive spike electric energy    |
| 47H | Current forward reactive flat electric energy     |
| 49H | Current forward reactive valley electric energy   |
| 4BH | Current reversing reactive spike electric energy  |
| 4DH | Current reversing reactive peak electric energy   |
| 4FH | Current reversing reactive flat electric energy   |
| 51H | Current reversing reactive valley electric energy |

## 6.5 Record of extreme value and occurrence time

## 1) Maximum records:

| Starting address of interval (high byte) | Type of historical data                         |  |
|------------------------------------------|-------------------------------------------------|--|
| 04                                       | Extremum of the month<br>and Occurrence time    |  |
| 05                                       | Extremum of last 1 month<br>and Occurrence time |  |
| 06                                       | Extremum of last 2 month<br>and Occurrence time |  |
| 07                                       | Extremum of last 3 month<br>and Occurrence time |  |

| Offset address of interval (low byte)) | Data type                                                                                                           |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| 00                                     | Voltage of A phase maximum value<br>and occurrence time                                                             |  |
| 03                                     | Voltage of B phase maximum value<br>and occurrence time                                                             |  |
| 06                                     | Voltage of C phase maximum value<br>and occurrence time<br>Voltage between A-B maximum value<br>and occurrence time |  |
| 09                                     |                                                                                                                     |  |
| 0C                                     | Voltage between A-B maximum value<br>and occurrence time                                                            |  |
| 0F                                     | Voltage between A-B maximum value<br>and occurrence time                                                            |  |
| 12                                     | Electricity of A phase maximum value<br>and occurrence time                                                         |  |

| 15  | Electricity of B phase maximum value |  |
|-----|--------------------------------------|--|
|     | and occurrence time                  |  |
| 18  | Electricity of C phase maximum value |  |
|     | and occurrence time                  |  |
| 1B  | Three phase current vector sum       |  |
|     | maximum value and occurrence time    |  |
| 1E  | Active power of A phase maximum      |  |
| TE  | value and occurrence time            |  |
| 22  | Active power of B phase maximum      |  |
|     | value and occurrence time            |  |
| 26  | Active power of C phase maximum      |  |
| 26  | value and occurrence time            |  |
| 2A  | Total active power maximum value     |  |
| ZA  | and occurrence time                  |  |
| 2E  | Reactive power of A phase maximum    |  |
| 2E  | value and occurrence time            |  |
| 32  | Reactive power of B phase maximum    |  |
| 52  | value and occurrence time            |  |
| 36  | Reactive power of C phase maximum    |  |
| 50  | value and occurrence time            |  |
| 3A  | Total reactive power maximum value   |  |
| JA  | and occurrence time                  |  |
| 3E  | Apparent power of A phase maximum    |  |
| 512 | value and occurrence time            |  |
| 42  | Apparent power of B phase maximum    |  |
| 42  | value and occurrence time            |  |
| 46  | Apparent power of C phase maximum    |  |
|     | value and occurrence time            |  |
| 4A  | Total apparent power maximum value   |  |
|     | and occurrence time                  |  |
|     |                                      |  |

## 2) Minimum record:

| Starting address of interval (high byte) | Type of historical data                         |  |
|------------------------------------------|-------------------------------------------------|--|
| 04                                       | Extremum of the month<br>and Occurrence time    |  |
| 05                                       | Extremum of last 1 month<br>and Occurrence time |  |
| 06                                       | Extremum of last 2 month                        |  |

| Offset address of interval (low byte)) | Data type                                               |  |
|----------------------------------------|---------------------------------------------------------|--|
| 4E                                     | Voltage of A phase Minimum Value<br>and occurrence time |  |
| 51                                     | Voltage of B phase Minimum Value<br>and occurrence time |  |
| 54                                     | Voltage of C phase Minimum Value                        |  |

|     | and occurrence time                  |
|-----|--------------------------------------|
| 57  | Voltage between A-B Minimum Value    |
| 57  | and occurrence time                  |
| 5 ^ | Voltage between B-C Minimum value    |
| 5A  | and occurrence time                  |
| 5D  | Voltage between C-A Minimum value    |
| 5D  | and occurrence time                  |
| 60  | Electricity of A phase Minimum value |
|     | and occurrence time                  |
| 63  | Electricity of B phase Minimum value |
| 00  | and occurrence time                  |
| 66  | Electricity of C phase Minimum value |
| 00  | and occurrence time                  |
| 69  | Three phase current vector sum       |
| 0,  | Minimum value and occurrence time    |
| 6C  | Active power of A phase Minimum      |
| 00  | value and occurrence time            |
| 70  | Active power of B phase Minimum      |
| 10  | value and occurrence time            |
| 74  | Active power of C phase Minimum      |
|     | value and occurrence time            |
| 78  | Total active power Minimum value and |
|     | occurrence time                      |
| 7C  | Reactive power of A phase Minimum    |
|     | value and occurrence time            |
| 80  | Reactive power of B phase Minimum    |
|     | value and occurrence time            |
| 84  | Reactive power of C phase Minimum    |
| ~ - | value and occurrence time            |
| 88  | Total reactive power Minimum value   |
|     | and occurrence time                  |
| 8C  | Apparent power of A phase Minimum    |
|     | value and occurrence time            |
| 90  | Apparent power of B phase Minimum    |
|     | value and occurrence time            |
| 94  | Apparent power of C phase Minimum    |
|     | value and occurrence time            |
| 98  | Total apparent power Minimum value   |
| 20  | and occurrence time                  |

|    | and Occurrence time                             |
|----|-------------------------------------------------|
| 07 | Extremum of last 3 month<br>and Occurrence time |

Note: The record of every extreme value and occurrence time is 6 bits, and the data

| ADDRH<br>ADDRL | Event names                 | Data type                              | Note                                                 |
|----------------|-----------------------------|----------------------------------------|------------------------------------------------------|
| 0400H          | Maximum voltage of          | The data of Maximum voltage of A phase | data and decimal place refer to address<br>table 6.2 |
| 0401H          | A phase and occurrence time | Occurrence time of minutes and hours   | high byte : minutes                                  |
| 0402H          |                             | Occurrence time of Days<br>and months  | high byte : Days                                     |

configuration can be refered as below:

## 7 Common troubleshooting

#### 7.1 RS485 networking communication failure

Suggestion: Please first confirm whether the RS485 wiring is loose, AB connection reverse and other problems, and then check the table through the button to see if the general selection parameters, such as address, baud rate, check digit, etc., are set correctly.

### 7.2 Wireless communication failure of instrumentation

Suggestion: Please connect RS485 interface on the meter and USB convert to 485 serial port to read the parameters, and confirm whether the parameters are the same as the upper terminal wireless configuration (channel and spread spectrum factor). If different, please modify the meter's wireless parameters and retest the master terminal after the same, and if the same, it may be the meter and master terminal are in a relative long distance. It is too far to communicate or the scene is seriously disturbed. We can try to use the external antenna at the same time, or consider the newly added wireless master terminals, and then test it.

Headquarters: Acrel Co., LTD.

Address: No.253 Yulv Road Jiading District, Shanghai , China

TEL.: 0086-21-69158338 0086-21-69156052 0086-21-59156392

0086-21-69156971

Fax: 0086-21-69158303

Web-site: www.acrel-electric.com

E-mail: ACREL008@vip.163.com Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., LTD. Address: No.5 Dongmeng Road,Dongmeng industrial Park, Nanzha Street,Jiangyin City,Jiangsu Province,China

TEL: 0086-510-86179966

Fax : 0086-510-86179975

Web-site: www.jsacrel.com

Postcode: 214405

E-mail: sales@email.acrel.cn